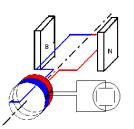
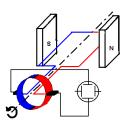
Naturkonstanten werden auf dem Aufgabenblatt der Klausur selbstverständlich stehen.

Aufgabe 1 a)

Von einer Spule sei gegeben: N = 2000, A_0 = 20 cm²; I = 10 cm; μ_r = 6000, R = 12 Ω

- a) Berechne die magnetische Flussdichte in der Spule, wenn lange genug nach dem Einschalten ein Strom von 4 A durch sie fließt.
- b) Skizziere das U t Diagramm für den Einschaltvorgang und begründe!
- c) Berechne die Induktivität der Spule!
- d) Der Strom wird abgeschaltet (Dauer des Schaltvorganges 0,01s). Berechne die Selbstinduktionsspannung!


Aufgabe 1 b)


Geg.: N = 1200, A_0 = 20 cm²; I = 12 cm; μ_r = 700, R = 2,5 $\square\Omega$ U = 10 V.

Berechne die Flussdichte in der Spule! Berechne die Induktivität der Spule! Berechne die gespeicherte Feldenergie!

Aufgabe 2

Vergleiche die beiden Bilder und skizziere jeweils das Bild, welches vom Oszilloskop angezeigt werden könnte.

Aufgabe 3

Gegeben ist ein 100 m langer Kupferdraht.

- 1. Der Draht ist gerade gespannt. Es wird eine Gleichspannung angelegt, Stromstärke und Spannung gemessen und der Widerstand R_1 berechnet.
- 2. Der Draht ist gerade gespannt. Es wird eine Wechselspannung angelegt, Stromstärke und Spannung gemessen und der Widerstand R_2 berechnet.
- 3. Der Draht ist zu einer Spule mit 1000 Windungen gewickelt. Es wird eine Gleichspannung angelegt, Stromstärke und Spannung gemessen und der Widerstand R_3 berechnet.
- 4. Der Draht ist zu einer Spule mit 1000 Windungen gewickelt. Es wird eine Wechselspannung mit einer Frequenz von 500 Hz angelegt, Stromstärke und Spannung gemessen und der Widerstand R₄ berechnet.
- Der Draht ist ist zu einer Spule mit 1000 Windungen gewickelt.
 Es wird eine Wechselspannung mit einer Frequenz von 50 Hz angelegt, Stromstärke und Spannung gemessen und der Widerstand R₅ berechnet.
- a) Warum sollte man mit den Messungen der Werte kurz warten?
- b) Ordne die Widerstände R₁ bis R₅ der Größe nach. Begründe!

Aufgabe 4

Das Pendel einer Pendeluhr (siehe Bild) gibt mit einer halben Schwingung eine Sekunde an. Die wirksame Länge des Pendels ist bei Auslieferung auf exakt 100,00 cm eingestellt. (Es gilt: $g=9.81\frac{m}{c^2}$.)

Wie viele Minuten geht die Uhr an einem Tag vor oder nach?

Der Verstellbereich der Pendellänge ist +/- 0,5 cm. Lässt sich die Uhr so einstellen, dass sie exakt geht? Begründe rechnerisch!

Beschreibe ausführlich einen dazugehörigen Versuch!

Erläutere die Bedingung "Kleine Auslenkungswinkel"

Aufgabe 5

Der untere Haken einer unbelasteten, hängenden Feder befindet sich 20 cm über dem Tisch. Jetzt wird ein 200 g - Massestück angehängt, der Haken (nicht das Massestück) befindet sich jetzt 10 cm über dem Tisch. Das Massestück wird nun 5 cm nach unten gezogen und zum Zeitpunkt t = 0 losgelassen.

Zeichne maßstabsgerecht das t - s -, das t - v - und das t - a Diagramm untereinander. Überprüfe mittels des t - a – Diagramms, ob es sich hier um eine harmonische Schwingung handeln kann!

Wann bewegt sich das Massestück erstmalig mit der maximalen Geschwindigkeit nach unten?

Beschreibe ausführlich einen dazugehörigen Versuch!

Aufgabe 6

Ein an einem 8,90 m langen Faden hängender Metallkörper wird um 10 cm nach links ausgelenkt und losgelassen. Der Schwerpunkt des Metallkörpers befindet sich 5 cm unter dem Fadenende, die Masse des Fadens und der Luftwiderstand können vernachlässigt werden. Wo befindet sich der Metallkörper 9 Sekunden nach dem Loslassen?

Achtung!

Dieses Übungsblatt ist weder die Klausur mit anderen Zahlen noch ersetzt es das Durcharbeiten des Heftes bzw. der entsprechenden Buchseiten.

Das Üben der Aufgaben im Buch nicht vergessen!

Die Aufgaben

- "Spule bewegt sich durch das B Feld" und
- "Magnetfeld im Innern einer Spule ändert sich linear"

gründlich anschauen.

Wirbelstrombremse erklären können.