1. Aufgabe: Fülle die Tabelle aus!

Physikalische Größe	Formel- zeichen	2 Einheiten	Gleichung
		$=100\frac{cm}{s^2}$	
		1h =	
Geschwindigkeit		=	
		$=1\frac{kg \cdot m}{s^2}$	
	m	=	

2. Aufgabe:

Zeichne die Bewegungsdiagramme für folgende Fahrt maßstabsgerecht:

Auto beschleunigt 5s lang mit a= $3\frac{m}{s^2}$, fährt dann 10s mit konstanter

Geschwindigkeit und bremst danach mit $6\frac{m}{s^2}$ bis zum Stillstand!

(Hinweis: Berechne **vor** dem Einteilen der Achsen alle relevanten Werte!)

Wie groß ist die Durchschnittsgeschwindigkeit des Gesamtvorganges!

3. Aufgabe:

Ein Stein fällt aus einer Höhe von 20 m senkrecht nach unten. Berechne die Flugzeit und die Aufprallgeschwindigkeit

4. Aufgabe:

Im Prospekt eines Autos steht unter anderem:

Zulässige Gesamtmasse: 1500kg

Beschleunigung von 0 auf 100 $\frac{km}{h}$: 9,8 s

Bremsweg aus 100 $\frac{km}{h}$: 38 m

Vereinfachend nehmen wir an, dass es sich jeweils um gleichmäßig beschleunigte Bewegungen handelt.

Berechne den während der Beschleunigung zurückgelegten Weg! Berechne die zum Bremsen benötigte Zeit