Lösung: Übung für die Klausur am Mittwoch Seite 3

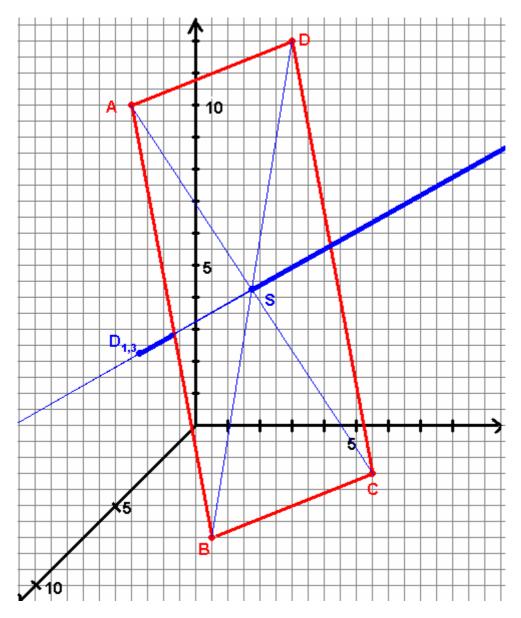
Aufgabe 5:

a)
$$g: \vec{x} = \begin{pmatrix} 3,5 \\ 7 \\ 8 \end{pmatrix} + q \cdot \begin{pmatrix} 0 \\ -10,5 \\ -6 \end{pmatrix}$$
 oder - von mir weiter verwendet: $\vec{x} = \begin{pmatrix} 3,5 \\ 7 \\ 8 \end{pmatrix} + q \cdot \begin{pmatrix} 0 \\ -7 \\ -4 \end{pmatrix}$

b)
$$36 \cdot (3,5 + 0 \cdot q) + 48 \cdot (7 - 7q) + 25 \cdot (8 - 4q) = 444!$$

- $436q = 444 - 662 = -218$
 $\Rightarrow q = 0,5 \Rightarrow S(3,5/3,5/6)$

- ⇒ q = 0,5 → S(3,5/3,5/6) Der Mittelpunkt der Strecken AC ist M $\left(\frac{4+3}{2}/\frac{0+7}{2}/\frac{12+0}{2}\right)$ = S(3,5/3,5/6). c) In jedem Parallelogramm, also auch im Rechteck ABCD, halbieren sich die Diagonalen. Also ist S auch der Mittelpunkt von ABCD!
- $x_1=0$ in $g \rightarrow 0 = 3.5 + 0.q \rightarrow$ keine Lösung \rightarrow g ist parallel zur $x_2 x_3$ Ebene, d) was man an den x₁ - Koordinaten von L und K übrigens schon sehen konnte. $x_2=0 \text{ in } g \rightarrow q = 1 \rightarrow D_{1,3}=(3,5/0/4)$ $x_3=0$ in $g \rightarrow q = 2 \rightarrow D_{1,2}=(3,5/-7/0)$ Der Punkt liegt links neben der $x_1 - x_3$ - Ebene und ist damit nicht mehr sichtbar.



Lösung: Übung für die Klausur am Mittwoch Seite 4

Bemerkung: Die Achsen sind auch Geraden. Ihre Gleichungen sind für die

$$x_1$$
 - Achse: $\vec{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + i \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = i \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$; x_2 - Achse: $\vec{x} = j \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ und x_3 - Achse: $\vec{x} = k \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Um eine Ebene einzuzeichnen, braucht man die Schnittpunkte mit den Achsen:

 $x_1 = i$; $x_2 = 0$; $x_3 = 0$ in E: $x_1 + x_2 = 4$ ergibt i = 4 und damit $Q_1(4/0/0)$

Oder kürzer: $x_2 = 0$; $x_3 = 0$ in E ergibt $x_1 = 4$ und damit $Q_1(4/0/0)$

 $x_1 = 0$; $x_3 = 0$ in E ergibt $x_2 = 4$ und damit $Q_2(0/4/0)$

 $x_1 = 0$; $x_2 = 0$ in E ergibt $0 = 4 \rightarrow$ falsche Aussage \rightarrow kein Schnittpunkt mit x_3 - Achse. Oder man sieht, dass der Normalenvektor von E parallel zur x_1 - x_2 - Ebene und E damit parallel zur x_3 - Achse ist.

$$x_2 = 0$$
; $x_3 = 0$ in F: $x_1 + 2x_2 + 3x_3 = 6$ ergibt $x_1 = 6$ und damit $R_1(6/0/0)$
 $x_1 = 0$; $x_3 = 0$ in F: $x_1 + 2x_2 + 3x_3 = 6$ ergibt $x_2 = 3$ und damit $R_2(0/3/0)$
 $x_1 = 0$; $x_2 = 0$ in F: $x_1 + 2x_2 + 3x_3 = 6$ ergibt $x_3 = 2$ und damit $R_3(0/0/2)$

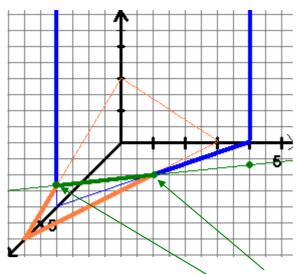
Die Sichtbarkeit ergibt sich eigentlich durch Nachdenken von alleine ©

Man kann allerdings auch die Schnittgerade h einzeichnen:

$$1 1x_1 + 1x_2 + 0x_3 = 4$$

$$\frac{|I|}{|I| - I|} \frac{1x_1 + 2x_2 + 3x_3 = 6}{x_2 + 3x_3 = 2}$$
 Mit x_3 = t ergibt sich x_2 = 2 - 3t und damit x_1 = 2 + 3t

$$h: \vec{x} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix} \quad t = -\frac{2}{3} \Rightarrow H_{2,3} \left(0/4/-\frac{2}{3} \right); \ t = \frac{2}{3} \Rightarrow H_{1,3} \left(4/0/\frac{2}{3} \right) \ t = 0 \Rightarrow H_{1,2} \left(2/2/0 \right)$$



Die Gerade h ist zwischen H_{1,3} und H_{1,2} sichtbar.