Lösungsblatt 5 der Hausaufgaben vom 08.10.2009 zu Aufgabe 2 e) und f)

2. Aufgabe:

Gegeben ist die Zahlenfolge A_n durch $a_n = \frac{n^2}{3n^2 + 1}$; $n \ge 1$

- Gib die ersten zwei Glieder auf drei Dezimalen genau an! (Ohne GTR!!)
 Stelle eine Vermutung für das Monotonieverhalten, und die größte untere Schranke auf (Mit GTR!!) und beweise diese!
- c) Jemand behauptet, dass 0,3 eine obere Schranke sei. Für wieviel Zahlenfolgenglieder gilt diese Vermutung?
- Beweise rechnerisch, dass $S = \frac{1}{3}$ die kleinste obere Schranke ist! d)
- Schließe aus den Ergebnissen von b) und d) auf den Grenzwert von (an)!
- Berechne mit Hilfe der Grenzwertsätze den Grenzwert von An! Die verwendeten Grenzwertsätze sind im Wortlaut anzugeben!
 - Aus b) folgt, dass A_n streng monoton wachsend ist.

Aus d) folgt, dass $S = \frac{1}{2}$ die kleinste obere Schranke ist.

Aus Satz 2 (S. 19) folgt also, dass $S = g = \frac{1}{3}$ Grenzwert der ZF A_n ist.

zu f) Annahme:
$$\frac{n^2}{3n^2 + 1} = \frac{n^2 \cdot 1}{n^2 \cdot \left(3 + \frac{1}{n^2}\right)} = \frac{1}{3 + \frac{1}{n^2}}$$

Bereits bewies ist, dass $\lim_{n\to\infty} \frac{1}{n} = 0$

Wegen Gleichung 2 (S. 22 - Produkt von GW) gilt :
$$\lim_{n\to\infty} \left(\frac{1}{n} \cdot \frac{1}{n}\right) = 0 \Rightarrow \frac{1}{n^2} \xrightarrow[n\to\infty]{} 0$$

Wegen Gleichung 1 (Summe von GW) gilt :
$$\lim_{n\to\infty} \left(3 + \cdot \frac{1}{n^2}\right) = 3 + 0 \Rightarrow \text{ Nenner } \longrightarrow 0$$

Der Zähler geht erkennbar gegen 1 (weil er konstant 1 ist ©)

Wegen Gleichung 3 (Quotient von GW) gilt :
$$\lim_{n\to\infty} a_n = \frac{1}{3}$$
 bzw. $\frac{n^2}{3n^2+1} \xrightarrow{n\to\infty} \frac{1}{3}$

zu f) von Aufg. 2 vom ersten Aufgabenblatt:

Gegeben ist die Zahlenfolge A_n durch $a_n = \frac{12n-7}{3n+1}$; $n \ge 1$

$$a_{n} = \frac{12n - 7}{3n + 1} = \frac{3n\left(4 - \frac{7}{3} \cdot \frac{1}{n}\right)}{3n\left(1 + \frac{1}{3} \cdot \frac{1}{n}\right)} = \frac{4 - \frac{7}{3} \cdot \frac{1}{n}}{1 + \frac{1}{3} \cdot \frac{1}{n}} \xrightarrow[n \to \infty]{} 4 - \frac{7}{3} \cdot 0$$

(Weil $\lim_{n\to\infty} \frac{1}{n} = 0$ und GW - Sätze auf S. 22 anwendbar sind.)