Noch keine Lösung, aber ein Hinweis zu Aufgabe 8

Es gelten alle Hinweise zu A 6 und A 7.

Zusätzlich:

Einen Überblick über die Nullstellen und eine Skizze braucht man unbedingt. Außerdem schadet es nichts, sich mit der Betragsdefinition noch einmal auseinander zu setzen.

Aufgabe 8: Vorzeichen der Funktion wechselt im betreffenden Intervall.

- a) Die x Achse, die Geraden x = -1 und x = 3 und das Schaubild der Funktion $m(x) = x^2 4$ begrenzen eine Fläche. Berechne ihren Inhalt! Alle Nullstellen und die beiden Geraden ... und die Integrationsgrenzen sind klar.
- b) Gegeben: $f(x) = x^3 4x$. Berechne die Fläche, die vom Schaubild K_f und der x - Achse begrenzt wird! Alle Nullstellen und die Skizze ... und die Integrationsgrenzen sind klar.
- c) Gegeben: $f(x) = 3\cos\left(\frac{1}{2}x\right)$

Berechne die Fläche, die zwei Perioden des Schaubildes K_f und die x - Achse begrenzen!

Alle Nullstellen und die Skizze ... und die Integrationsgrenzen sind klar.

d) Gegeben sei die Funktion $s = f(t) = \sin(t) - \frac{1}{2}$ im Intervall $I = \left[-\frac{\pi}{4}; \frac{\pi}{4} \right]$

Berechne den Inhalt der Fläche, der im angegebenen Intervall zwischen dem Schaubild und der t - Achse liegt.

$$\sin(30^\circ) = 0.5$$
 $\sin(\beta) = 0.5$ \rightarrow Nur für 30° ??? Und das Bogenmaß von 30° und ...?

Mit dem GTR ist das hier alles kein Problem!