Aufgabe 2:

Gegeben seien $f(x) = \frac{2x^2 - 7x + 5}{5x}$ mit Schaubild K und der Punkt P(1/5)

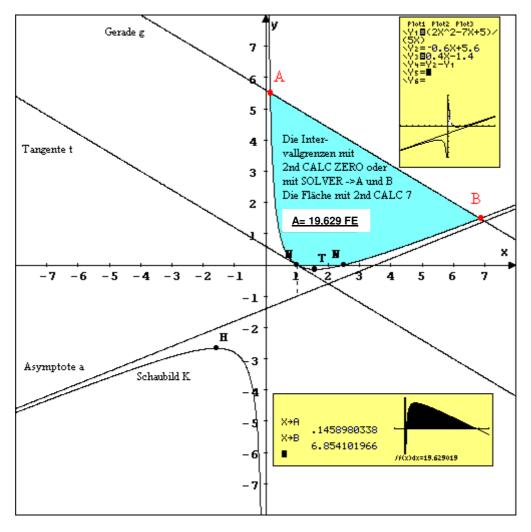
Asymptoten: a_1 : y = 0,4x - 1,4; a_2 ist die y - Achse

Schnittpunkte mit der x – Achse: $N_1(1/0)$; $N_2(2,5/0)$; der linke ist also N_1

Ableitung:
$$f'(x) = \frac{2x^2 - 5}{5x^2}$$
 Die Nullstellen sind $\pm \sqrt{\frac{5}{2}} \approx \pm 1,581$

$$f''(x) = \frac{2}{x^3} \Rightarrow \text{Es gibt keine WP!}$$

 $f'(1) = -0.6 \rightarrow t$: $y = -0.6x + 0.6 \rightarrow g$: y = -0.6x + 5.6 Rest mit GTR oder mit TplotWin)



<u>Aufgabe 3:</u> Geg.: $f(x) = x^2 - x$

a)
$$F(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + c \Rightarrow F(-2) = -\frac{8}{3} - 2 + c = 10$$
$$\Rightarrow c = 14\frac{2}{3} \Rightarrow F(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + 14\frac{2}{3}$$

 $F'(x) = f(x) \rightarrow f(-2) = 6$ Die Stammfunktion F hat an der Stelle –2 den Anstieg 6.

b) $G''(x) = f'(x) = 0 \rightarrow 2x - 1 = 0 \rightarrow x_w = 0.5$. Da G dritten Grades, gibt es auch diesen und nur diesen WP

$$G(0,5) = G(0,5) = -\frac{1}{12} + c = 2 \Rightarrow c = \frac{25}{12} = 2\frac{1}{12} \Rightarrow G(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + 2\frac{1}{12}$$