Nr. 2:
Kumulierte Wahrscheinlichkeiten der $\mathrm{B}_{16 ; 0,51}$-Verteilung:

>	8	$\begin{aligned} & 8 \\ & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \end{aligned}$	8	$\begin{aligned} & \tilde{N} \\ & 0 \\ & 0 \end{aligned}$	-		$\begin{aligned} & \underset{\sim}{\lambda} \\ & \mathrm{m} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{array}{l\|} \infty \\ \infty \\ 0 \\ 0 \end{array}$	N	$\begin{aligned} & \hat{N}^{\infty} \\ & 0 \\ & 0 \end{aligned}$	No	$\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \end{aligned}$	O -
\times	0	\checkmark	\sim	m	\checkmark	n	\bullet	N	∞	σ	이	$\xrightarrow{-}$	$\underset{\sim}{\sim}$	$\stackrel{n}{\neg}$	$\stackrel{\rightharpoonup}{-}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$

> Signifikanzniveau: 5\%
Annahmebereich: [0;11] (in der Tabelle

fett markiert)

Ablehnungsbereich: [12;16]

 Stichprobe: $X=2+8=10$10 liegt im Annahmebereich!

[^0]$H_{0}: p=p_{0}=69 \%$
$H_{1}: p=p_{1}=84 \%$
$n=16$

- $\quad p_{1}>p_{0}$, also muss H_{0} rechtsseitig getestet
\quad werden
Signifikanzniveau: 5%
Annahmebereich für $H_{0}:[0 ; 14]$ (in der Tabelle
fett markiert)
- $P($ Fehler 1. Art $)=$
\quad Irrtumswahrscheinlichkeit= $P(X \geq 15) \approx 2 \%$
- $P($ Fehler 2 . Art $)=P\left(X \leq 14\right.$, wenn $H_{1}: p=p_{1}=0,84$
gilt $) \approx 75 \%$

	$\begin{aligned} & \hline \infty \\ & \infty \\ & 0 \\ & 0 \\ & 011 \\ & 0 \end{aligned}$	N	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & -1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & -\quad \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathbf{O} \end{aligned}$	$$	$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$	-	-
	9 0 0 11 0	خ	0	0	8	0	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & -1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	엉	$\begin{gathered} n \\ 0 \\ 0 \end{gathered}$	$\stackrel{N}{n}_{0}^{\infty}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \end{aligned}$	or	on	-	O -
	$\begin{array}{\|l\|} \hline 0 \\ 111 \end{array}$	\times	0	\square	\sim	m	\checkmark	ก	6	N	∞	σ	$\xrightarrow{\circ}$	\cdots	$\underset{\sim}{\sim}$	$\stackrel{n}{7}$	$\stackrel{-}{-}$	$\stackrel{\sim}{\square}$	$\stackrel{\square}{-}$

$$
\begin{aligned}
& H_{0}: p=p_{0}, p_{0}=26 \% \\
& H_{1}: p<p_{0}, p<26 \% \\
& \text { Stichprobe: } X=2 \text { liegt im Ablehnungsbereich. } \\
& n=x \text { (ist unbekannt) } \\
& \text { Signifikanzniveau: } 5 \% \\
& \text { Bei } x=22 \text {, also bei einer Stichprobe mit } 22 \\
& \text { Schülerinnen liegt } P(X \leq 2) \text { erstmals unter } 5 \% \text {, } \\
& \text { und die Stichprobe } \quad X=2 \text { somit im } \\
& \text { Ablehnungsbereich. }
\end{aligned}
$$

$\stackrel{+}{\square}$ Die Tabelle zeigt die unterschiedlichen $P(X \leq 2)$
für $\quad B_{x ; 0,26}$-Verteilungen (binomcdf($x, 0.26,2$)):

$n=$	$\mathrm{p}=0,26$
X	Y
16	0,173
17	0,142
18	0,116
19	0,094
20	0,076
21	0,062
22	$\mathbf{0 , 0 4 9}$
23	0,040
24	0,032
25	0,025
26	0,020
27	0,016

[^0]: ## Nr. 3:

 Die zweite Aussage ist „stärker", da die theoretische Möglichkeit eines Irrtums geringer ist. Je kleiner die Irrtumswahrscheinlichkeit eines Tests ist, desto höher
 ableiten lassen.

