Übung für Klasse 10a

(Korrigierte und ergänzte Version!)

Die Lösung schaffe ich wohl nicht mehr bis zur Tagesschau, aber rechnet mal schön, die Lösung stelle ich morgen rein.

1. Leite ab!

$$f(x) = x^2 - x + 1$$

$$f(x) = x^2 - x + 1$$
 $g(x) = 4x^5 - x^{-2}$ $h(x) = \sqrt[3]{x^5}$

$$h(x) = \sqrt[3]{x^{5}}$$

2. Löse die Gleichung!

a)
$$x^4 + 3x^2 = 4$$

b)
$$\frac{9}{x} + \frac{2}{x^2} = \frac{1}{x^2}$$

a)
$$x^4 + 3x^2 = 4$$
 b) $\frac{9}{x} + \frac{2}{x^2} = 5$ c) $2^{2x} - 7 \cdot 2^x - 8 = 0$

3. Gegeben sind die Punkte A(2/1/1); B(14/1/1); D(2/5/1) und E(2/1/4).

Die genannten Punkte spannen einen Quader ABCDEFGH auf, wobei das Rechteck EFGH über dem Rechteck ABCD liegt.

- a) Weise nach, dass Dreieck DAE rechtwinklig ist! Berechne die Länge der Strecke DE!
- b) Das Dreieck FED ist auch rechtwinklig. Begründe! Berechne die Länge der Strecke DF!
- c) Zeichne den Quader und seine Projektion in die $x_1 x_3$ Ebene in ein geeignetes KS!
- 4. (Mit GTR und Formelsammlung)

Gegeben ist die Funktion $f(x) \frac{1}{x^4 - 5x^2 + \frac{1}{x}x + 7}$

- a) Weise nach, dass der Definitionsbereich R ist!
- b) Berechne im Intervall [-3;3] alle wichtigen Punkte auf vier Dezimalen genau!
- c) Zeichne das Schaubild K_f im Intervall [-3;3] in ein $KS \rightarrow 1LE = 2cm!$
- d) Gegeben seien weiterhin P(2/f(2)) und Q(-1/1)Gib die Gleichung der Tangente t an K_f im Punkt P an berechne alle weiteren Schnittpunkte von t und K_f!
 - Zu d) Einmal ohne 2nd DRAW und danach mit zur Kontrolle!
- 5. Gegeben sei die gerade quadratische Pyramide ABCDS mit A(2/2/1) C(8/8/1) und S(a/b/5)

Zeichne sie in ein KS und berechne die Länge aller Kanten, das Volumen und die Oberfläche!